
Agile Behaviour Design: A Design Approach for
Structuring Game Characters and Interactions

Swen E. Gaudl

Falmouth University, MetaMakers Institute swen.gaudl@gmail.com

Abstract. In this paper, a novel design methodology—Agile Behaviour
Design—is presented that accommodates the requirements for develop-
ing complex game agents suitable for industrial environments. An essen-
tial part of the design approach is to support independent work of both
designers and programmers by reducing bottleneck situations. The ap-
proach fosters the creation of more loose and fluid interactions between
design and implementation, leaving more freedom for creative expression.

Keywords: agent design, authoring tools, planning, iva

1 Introduction

In game development and similarly in other dynamic software projects, scrum is
the dominating approach [14, 9] for developing products in a managed way. The
scrum process model is based on the agile philosophy, supporting alterations to
the product late in the project; a situation often required in game development.
“scrum for games” [9], an approach specifically adjusted for games, discusses
four phases which partition the development, i.e. concept, pre-production, pro-
duction, post-production. The phases have defined milestone points that are gen-
erated at the start of each project. Even for non-industrial game development or
game AI design, process models are useful. They provide a common framework
that can support the integrating different parties into a shared project that con-
verges on a common goal. However, “scrum for games” is described only on a
high abstraction level not aiding the design of specific game components such
as the game AI system. In contrast to scrum which focuses only on a high-level
approach, game character development requires the integration of lower level
design and approaches as well. Thus, for story generation which often includes
the low level design of character AI driving the story, an approach is needed
that integrates both high and low level design. This paper introduces Agile
Behaviour Design (A-BeD) an agile design methodology that embeds both
levels into its approach including the need for a better author integration. The
approach also provides another solution to the authoring problem for interactive
storytelling [15]. Traditional game development phases impact and direct the
creative process and freedom of designers and influence the system design. The
more mature the system or game becomes, the more restrictive are deviations
from the initial design. Thus, features need to be known early and should not

emerge late in the design. This affects character and interaction design massively
as alterations to them emerge during interacting with the system and user test-
ing. In those instances, A-BeD can support the process and the development of
behaviour-based agent AI responsible for creating dynamic and ”living” stories.

2 Background & Related Work

A-BeD is based on the Behavior-Oriented Design (bod) methodology[2],
a top-down analysis of a desired behaviour combined with a bottom-up genera-
tion of plans and a behaviour library1. The bod top-down analysis starts with
the definition of a high-level task the agent wants to achieve, an undertaking
for generating a single agent in a well-defined environment by an expert. Next,
the plans are built bottom-up by implementing primitives and enriching the be-
haviour plan. Primitives are clustered into behaviours according to their usage of
shared memory/state objects. New goals and sub-trees are added until the agent
is capable of performing the initially defined task. An existing systems analy-
sis, comparing three Intelligent Virtual Agent (IVA) approaches—bod[2],
ABL[11] & FaTiMa [4] , found that the decomposition and plan creation to be
a challenging process [7]. The process requires authors to able to express them-
selves within a specific tool while at the same time maintaining their creative
design goal under the system’s restrictions. Supporting this process is crucial
for reducing the burden on novice or less technical users. Similar observations
were made during an undergraduate AI course, taught at the University of Bath,
where student as part of their coursework created ivas using bod. Novices tended
to generate either flat shallow plans or deep narrow plans, restricting the result-
ing agent immensely. These observations also apply to other approaches such
as BehaviorTree (bt) [3] as they are part of authorial burdens [15]. When
using bod/creating a [BT], iterating over the plan[tree] and creating behaviour
primitives[nodes] results in a tight coupling of programmer and designer as the
entire behaviour library and plan structure is in flux. This is undesirable as it
locks both parties into very restrictive patterns of interaction. Additionally, in-
creased agent sizes or story depth such as the narrative in Façade [10] lead to
growing complexity of the underlying structure as well which requires a lot of
careful design. Thus, selecting the right system architectures and approach is
important. A system based on finite-state machines increases its complexity ex-
ponentially, even in the average case (normal design), which renders any system
at a certain stage unusable. Frameworks for modelling behaviour such as bt and
posh [6, 5] have an exponential complexity growth only in the worst case (bad
design). Planning systems such as goap [12] require authors able program ex-
pert systems as the plan they code is highly complex. However, this reduces the
interdependence of nodes and the amount of manual work, e.g. checking all tran-
sitions. posh integrates a lightweight planner allowing local design by modifying
existing sub-trees and hierarchically nesting them within its modular structure.

1 Behaviour plans are designed to be human readable/amendable. The behaviour li-
brary is compiled game engine or agent framework specific program code.

3 A Directed Model for Behaviour Design

To advance bod into A-BeD, elements of the scrum process were integrated
to guide the agent design and the new process was designed to converge more
against a final product. Scrum is an agile software development process inte-
grating iterative development and testing while maintaining as much as possible
the time predictability from other development processes such as the Waterfall
model. It partitions the project into smaller Sprints, each taking a specified time
and dealing with a defined set of features/tasks. At the end of each Sprint, the
entire system should be able to execute the features developed during the Sprint,
including those that have been newly integrated. Features are collected on a fea-
ture board which presents them in ordered lists (product backlog) of completed,
in-progress and to-be-implemented elements. ”Scrum for Games” [9] starts with
an initial full system specification and continuous stable versions of the prod-
uct while incrementally adding features from a feature board. The important
part,the feature board, is created and laid out to schedule the work and progress
of all features. This contrasts conventional scrum where work is scheduled into
tasks that can contain partial or parts of multiple features. After all features for
the final product and production phases have been laid out, the implementation
starts. The starting point of bod is initially a minimal plan containing a small
set of action primitives,as shown in [13, 2].

3.1 Agile Behaviour Design

The first step is to decompose a given scenario (1) into a full set of behaviour
primitives(i.e., actions and senses) and state variables. In the case of a stealth
game, those could include moving to a location, sensing if a player is close or
opening/closing a door. After that, the designer is building a full behaviour
plan (2) for the agent that suffices the scenario specification. This step is more
time-consuming than the incremental build up using bod and cognitively more
challenging. It should be done in as few sessions as possible by building an en-
tire behaviour plan bottom up using the previously specified primitives. This
part of the development is a pure design task without the need for programmer
involvement. Using a planning system this would involve noting all pre-&post-
conditions and states, e.g. if the player is visible and the NPC is too far away
it moves closer and triggers a dialogue. Next, the initial design plan is eval-
uated (3) together with a programmer. Based on the feedback, the design is
modified; primitives are added, adjusted and renamed. Behaviour stubs are gen-
erated (4a) in an Object-Oriented Design (OOD) fashion. All specified
primitive are stubbed and clustered into them according to memory/state us-
age. This stage is a pure programmer task as it involves creating empty methods
such as moveTo(Location), sense(Player), open(Object) which are referenced in
the design. New primitives should contain a default return state (4b). At this
point, the fallback action should be called if other plan elements fail. It is the
only action which needs an implementation in the beginning. This primitive al-
lows the plan to be executable and represents an idle state of the agent. When

designing a behaviour plan, its sub-plans (sub-trees in bt) are triggered upon
meeting one or multiple conditions. Thus, when conditions are not fulfilled, the
trigger does not release the related sub-tree. Following the previous example,
an agent might not be able to sense the player if a door is closed. Thus, the
sub-tree dealing with the player will not be triggered. Using this mechanism, it
is possible to deactivate parts of the plan similar to the bitmasks used by Isla
[8]. To achieve this, the designer can integrate senses that unlock sub-trees if
they are triggered. Once implemented, those senses can activate the sub-plan.
Interacting with the player can be disabled by requiring the sense(Player) to
return true and using a default /textitfalse return value to disable the sub-tree.

After obtaining a first feature-complete plan, the work on the underlying
behaviour primitives can be adjusted to work on individual features. Thus, the
feature board can be ordered (5) by clustering actions and senses under specific
feature groups such as NPC movement, dialogue system, or combat.The alter-
ation to the feature board can be done by grouping actions and senses according
to their position in the hierarchical tree. This supports the identification of re-
dundant or re-usable functionality by identifying similar usage of actions and
senses within competences. On the feature board, the relating features should
be ordered so that sub-trees can be completed one at a time, thus, unlocking
them for the agent. This clustering allows programmers to shift entire feature
blocks up and down on the feature board without impacting other sub-trees.

If the behaviour designer now decides to alter the plan, a large number of ac-
tions and senses are already stubbed within the hollow behaviour set. This given
structure allows the designer to work independently (6b) on the design while pro-
grammers can implement the stubs (6a). Following this approach requires fewer
inclusions of new underlying primitives than following a simple incremental ap-
proach; it also distributes the work better between designer and programmer by
initially close coordination in the first phase and a looser coupling later on.

Ideally, the work is directed from bottom to top of plan following the idea of
the Subsumption design [1]. This will enable higher level drives after lower level
ones have been implemented and tested. By approaching the iterative design (7)
this way, the complexity and expressiveness of the agent increases according to
the designed priorities without impacting the robustness or completeness of the
behaviour plan.

3.2 Agile Process Steps

1 Decompose scenario behaviour into primitives, states and goals (Design)
2 Design full behaviour plan that would suffice intended scenario (Design)
3 adjust/alter plan and primitive list (Design+Programming)
4a Templating behaviour stubs (Programming)
4b Design behaviour plan to have feature locks (Design)
5 Modify feature board & sort according to sub-trees (Design+Programming)
6a Implement stubs and alter primitives according to features (Programming)
6b Test & Develop behaviour plan based on given primitives/features (Design)
7 Loop to 3) until feature board is empty

Agile Behaviour Design was used to develop agents for starcraft [5] and
in the development of the Android game Stealthier POSH2 as a proof of
concept. Maintaining a prioritised feature set which relates to the plan sub-trees
proved in those two case studies beneficial and provides transferable knowledge
for commercial development environments as well. The feature board allows
for better tracking of the development progress and more independent work of
designers and programmers. Additionally, it removes the burden of numerous
changes to the behaviour library early in the project or restricting the designer
from working purely on the plan without being able to test it. Unimplemented ac-
tions returning the default state allow for the parallel work on partial behaviours
which decouples the programmer. Using A-BeD with hierarchical planners such
as posh enables working on smaller sections of an agent and concentrating for
example on interaction with other agents while the dependencies between de-
signer and programmer are reduced. Additionally, integrating the default trigger
states, sub-trees unlock based on the progress of their underlying implementa-
tion. This cascaded unlocking of the tree and the resulting behaviour allows for
a better version control of the behaviour library because it is more directed to-
wards realising connected sub-trees. The combination of working on sub-trees
and the feature board based on scrum directs the agent implementation to fo-
cus on connected pieces. The new approach should provide sufficient support for
working on more complex systems or distributing work between different people
such as movement and narration design for a given agent.

4 Conclusion & Future Work

This paper presents a novel, project-oriented methodology, extending the exist-
ing behavior oriented design (bod) [2]. One focus of the new methodology
is to provide better separation of design and programming and to support the
development of artificial agents in teams of multi-disciplinary authors. The two
case studies and the feedback from the systems analysis [7] create the basis for
the newly introduced process steps of the methodology. The new process allows
designers and programmers to distribute their work better while still following
keeping the project progress in mind. Agile Behaviour Design reduces the
dependencies of the different user groups such as authors, designers and pro-
grammers. To further aid the development and to focus on multi-platform de-
velopment the arbitration architecture posh-sharp [5] was designed to support
specifically the agile design approach better. As a next step, further evaluations
of the new methodology and approach are intended with novice and expert users
as well as a widened systematic analysis of development approaches to support
cross-disciplinary design.

2 The game is available on the Android app store or using the following link: https:
//play.google.com/store/apps/details?id=com.fairrats.POSH

References

[1] Brooks, R.: A robust layered control system for a mobile robot. Robotics
and Automation, IEEE Journal of 2(1), 14–23 (1986)

[2] Bryson, J.J.: Intelligence by Design: Principles of Modularity and Coor-
dination for Engineering Complex Adaptive Agents. Ph.D. thesis, MIT,
Department of EECS, Cambridge, MA (June 2001), 2001-003

[3] Champandard, A.J., Dunstan, P.: The behavior tree starter kit. In: Rabin,
S. (ed.) Game AI Pro: Collected Wisdom of Game AI Professionals, pp.
72–92. Game Ai Pro, A. K. Peters, Ltd. (2013)

[4] Dias, J., Mascarenhas, S., Paiva, A.: Fatima modular: Towards an agent
architecture with a generic appraisal framework. In: Emotion Modeling,
pp. 44–56. Springer (2014)

[5] Gaudl, S.E.: Building Robust Real-Time Game AI: Simplifying & Automat-
ing Integral Process Steps in Multi-Platform Design. Ph.D. thesis, Depart-
ment of Computer Science, University of Bath (2016)

[6] Gaudl, S.E., Davies, S., Bryson, J.J.: Behaviour Oriented Design for real-
time-strategy games. In: Proceedings of the Foundations of Digital Games.
pp. 198–205. Society for the Advancement of Science of Digital Games
(2013)

[7] Grow, A., Gaudl, S.E., Gomes, P.F., Mateas, M., Wardrip-Fruin, N.: A
methodology for requirements analysis of ai architecture authoring tools.
In: Foundations of Digital Games 2014. (2014)

[8] Isla, D.: GDC 2005 proceeding: Handling complexity in the halo 2 AI.
(2005)

[9] Keith, C.: Agile Game Development with Scrum. Addison-Wesley Signature
Series (Cohn), Pearson Education (2010),

[10] Mateas, M.: Interactive Drama, Art, and Artificial Intelligence. Technical
report cmu-cs-02-206, School of Computer Science, Carnegie Mellon Uni-
versity (December 2002)

[11] Mateas, M., Stern, A.: A behavior language for story-based believable
agents. Intelligent Systems, IEEE 17(4), 39–47 (2002)

[12] Orkin, J.: Agent architecture considerations for real-time planning in games.
In: Young, M.R., John, L. (eds.) Proceedings of the First Artificial Intelli-
gence and Interactive Digital Entertainment Conference. pp. 105–110. AAAI
Press, Menlo Park, CA (2005)

[13] Partington, S.J., Bryson, J.J.: The Behavior Oriented Design of an Un-
real Tournament character. In: Panayiotopoulos, T., Gratch, J., Aylett, R.,
Ballin, D., Olivier, P., Rist, T. (eds.) The Fifth International Working Con-
ference on Intelligent Virtual Agents. pp. 466–477. Springer, Kos, Greece
(September 2005)

[14] Rubin, K.: Essential Scrum: A Practical Guide to the Most Popular Ag-
ile Process. Addison-Wesley Signature Series (Cohn), Pearson Education
(2012),

[15] Spierling, U., Szilas, N.: Authoring issues beyond tools. In: Joint Interna-
tional Conference on Interactive Digital Storytelling. pp. 50–61. Springer
(2009)

